Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

Search for gravitational waves from binary inspirals in S3 and S4 LIGO data

Abbott, B. and Abbott, R. and Adhikari, R. and Agresti, J. and Ajith, P. and Allen, B. and Amin, R. and Lockerbie, N.A. (2008) Search for gravitational waves from binary inspirals in S3 and S4 LIGO data. Physical Review D: Particles and Fields, 77 (6). ISSN 0556-2821

[img]
Preview
PDF (strathprints006489.pdf)
strathprints006489.pdf
Accepted Author Manuscript

Download (369kB) | Preview

Abstract

We report on a search for gravitational waves from the coalescence of compact binaries during the third and fourth LIGO science runs. The search focused on gravitational waves generated during the inspiral phase of the binary evolution. In our analysis, we considered three categories of compact binary systems, ordered by mass: (i) primordial black hole binaries with masses in the range 0.35M[sun]<m1, m2<1.0M[sun], (ii) binary neutron stars with masses in the range 1.0M[sun]<m1, m2<3.0M[sun], and (iii) binary black holes with masses in the range 3.0M[sun]<m1, m2<mmax with the additional constraint m1+m2<mmax, where mmax was set to 40.0M[sun] and 80.0M[sun] in the third and fourth science runs, respectively. Although the detectors could probe to distances as far as tens of Mpc, no gravitational-wave signals were identified in the 1364 hours of data we analyzed. Assuming a binary population with a Gaussian distribution around 0.75-0.75M[sun], 1.4-1.4M[sun], and 5.0-5.0M[sun], we derived 90%-confidence upper limit rates of 4.9 yr-1L10-1 for primordial black hole binaries, 1.2 yr-1L10-1 for binary neutron stars, and 0.5 yr-1L10-1 for stellar mass binary black holes, where L10 is 1010 times the blue-light luminosity of the Sun.