Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds

Abbott, B. and Abbott, R. and Adhikari, R. and Agresti, J. and Ajith, P. and Allen, B. and Amin, R. and Anderson, S.B. and Lockerbie, N.A., LIGO Sci Collaboration, ALLEGRO Collaboration (2007) First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds. Physical Review D: Particles and Fields, 76 (2). 022001/1-022001/17. ISSN 0556-2821

[img]
Preview
PDF (strathprints006483.pdf)
strathprints006483.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

Data from the LIGO Livingston interferometer and the ALLEGRO resonant-bar detector, taken during LIGO's fourth science run, were examined for cross correlations indicative of a stochastic gravitational-wave background in the frequency range 850-950 Hz, with most of the sensitivity arising between 905 and 925 Hz. ALLEGRO was operated in three different orientations during the experiment to modulate the relative sign of gravitational-wave and environmental correlations. No statistically significant correlations were seen in any of the orientations, and the results were used to set a Bayesian 90% confidence level upper limit of Omegagw(f)<=1.02, which corresponds to a gravitational-wave strain at 915 Hz of 1.5×10-23 Hz-1/2. In the traditional units of h1002Omegagw(f), this is a limit of 0.53, 2 orders of magnitude better than the previous direct limit at these frequencies. The method was also validated with successful extraction of simulated signals injected in hardware and software.