Picture child's feet next to pens, pencils and paper

Open Access research that is helping to improve educational outcomes for children

Strathprints makes available scholarly Open Access content by researchers in the School of Education, including those researching educational and social practices in curricular subjects. Research in this area seeks to understand the complex influences that increase curricula capacity and engagement by studying how curriculum practices relate to cultural, intellectual and social practices in and out of schools and nurseries.

Research at the School of Education also spans a number of other areas, including inclusive pedagogy, philosophy of education, health and wellbeing within health-related aspects of education (e.g. physical education and sport pedagogy, autism and technology, counselling education, and pedagogies for mental and emotional health), languages education, and other areas.

Explore Open Access education research. Or explore all of Strathclyde's Open Access research...

Use of a wave energy converter as a motion suppression device for floating wind turbines

Borg, Michael and Collu, Maurizio and Brennan, Feargal P. (2013) Use of a wave energy converter as a motion suppression device for floating wind turbines. Energy Procedia, 35. pp. 223-233. ISSN 1876-6102

[img]
Preview
Text (Borg-etal-EP-2013-Use-of-a-wave-energy-converter-as-a-motion-suppression-device-for-floating-wind-turbines)
Borg_etal_EP_2013_Use_of_a_wave_energy_converter_as_a_motion_suppression_device_for_floating_wind_turbines.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 logo

Download (583kB) | Preview

Abstract

Floating offshore wind turbines (FOWTs) are subjected to large amplitude motions that induce greater loads on components and reduce aerodynamic performance. One approach to counteract this has been to use passive damping systems for FOWTs to dissipate the wave-induced energy and therefore reduce the global platform motions. This paper proposes that rather than discard this energy, a wave energy converter (WEC) is utilized on the floating platform to absorb it. A study is carried out on a floating vertical axis wind turbine (VAWT) combined with WEC moving in heave. A range of damping and stiffness coefficients are applied between the FOWT and WEC to establish strategies for two cases: maximum motion reduction and maximum energy extraction. The results and conclusions obtained are presented in terms of modifying the WEC natural frequency, damping and stiffness values.