Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Wind turbine Cpmax and drivetrain-losses estimation using Gaussian process machine learning

Hart, E and Leithead, W E and Feuchtwang, J (2018) Wind turbine Cpmax and drivetrain-losses estimation using Gaussian process machine learning. Journal of Physics: Conference Series, 1037. ISSN 1742-6588

[img]
Preview
Text (Hart-etal-JPCS-2018-Wind-turbine-Cpmax-and-drivetrain-losses-estimation)
Hart_etal_JPCS_2018_Wind_turbine_Cpmax_and_drivetrain_losses_estimation.pdf
Final Published Version
License: Creative Commons Attribution 3.0 logo

Download (296kB) | Preview

Abstract

In this paper it is shown that measured data in a wind turbine, available to the controller, can be formulated into a polynomial regression problem in order to estimate the turbine's maximum efficiency power coefficient, Cpmax, and drivetrain losses, assuming the latter can be well approximated as being linear. Gaussian process (GP) machine learning is used for the regression problem. These formulations are tested on data generated using the Supergen Exemplar 5 MW wind turbine model, with results indicating that this is a potential low cost method for detecting changes in aerodynamic efficiency and drivetrain losses. The GP approach is benchmarked against standard least-squares (LS) regression, with the GP shown to be the superior method in this case.