Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Enforcing eigenvector smoothness for a compact DFT-based polynomial eigenvalue decomposition

Coutts, Fraser Kenneth and Thompson, Keith and Pestana, Jennifer and Proudler, Ian and Weiss, Stephan (2018) Enforcing eigenvector smoothness for a compact DFT-based polynomial eigenvalue decomposition. In: 10th IEEE Workshop on Sensor Array and Multichannel Signal Processing, 2018-07-08 - 2018-07-11.

[img]
Preview
Text (Coutts-etal-IEEE-SAMSP-2018-Enforcing-eigenvector-smoothness-for-a-compact-DFT-based-polynomial)
Coutts_etal_IEEE_SAMSP_2018_Enforcing_eigenvector_smoothness_for_a_compact_DFT_based_polynomial.pdf
Accepted Author Manuscript

Download (148kB) | Preview

Abstract

A variety of algorithms have been developed to compute an approximate polynomial matrix eigenvalue decomposition (PEVD). As an extension of the ordinary EVD to polynomial matrices, the PEVD will generate paraunitary matrices that diagonalise a parahermitian matrix. While iterative PEVD algorithms that compute a decomposition in the time domain have received a great deal of focus and algorithmic improvements in recent years, there has been less research in the field of frequency-based PEVD algorithms. Such algorithms have shown promise for the decomposition of problems of finite order, but the state-of-the-art requires a priori knowledge of the length of the polynomial matrices required in the decomposition. This paper presents a novel frequency-based PEVD algorithm which can compute an accurate decomposition without requiring this information. Also presented is a new metric for measuring a function's smoothness on the unit circle, which is utilised within the algorithm to maximise eigenvector smoothness for a compact decomposition, such that the polynomial eigenvectors have low order. We demonstrate through the use of simulations that the algorithm can achieve superior levels of decomposition accuracy to a state-of-the-art frequency-based method.