Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Dispersive properties of high order nedelec/edge element approximation of the time-harmonic Maxwell equations

Ainsworth, Mark (2004) Dispersive properties of high order nedelec/edge element approximation of the time-harmonic Maxwell equations. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences, 362 (1816). pp. 471-493. ISSN 1364-503X

[img]
Preview
Text (strathprints000064)
strathprints000064.pdf - Accepted Author Manuscript

Download (556kB) | Preview

Abstract

The dispersive behaviour of high-order Næ#169;dæ#169;lec element approximation of the time harmonic Maxwell equations at a prescribed temporal frequency ω on tensor-product meshes of size h is analysed. A simple argument is presented, showing that the discrete dispersion relation may be expressed in terms of that for the approximation of the scalar Helmholtz equation in one dimension. An explicit form for the one-dimensional dispersion relation is given, valid for arbitrary order of approximation. Explicit expressions for the leading term in the error in the regimes where ωh is small, showing that the dispersion relation is accurate to order 2p for a pth-order method; and in the high-wavenumber limit where 1«ωh, showing that in this case the error reduces at a super-exponential rate once the order of approximation exceeds a certain threshold, which is given explicitly.