Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Invariant manifolds and orbit control in the solar sail three-body problem

Waters, Thomas J. and McInnes, Colin R. (2008) Invariant manifolds and orbit control in the solar sail three-body problem. Journal of Guidance, Control and Dynamics, 31 (3). pp. 554-562. ISSN 1533-3884

[img]
Preview
PDF (strathprints006375.pdf)
strathprints006375.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

In this paper we consider issues regarding the control and orbit transfer of solar sails in the circular restricted Earth-Sun system. Fixed points for solar sails in this system have the linear dynamical properties of saddles crossed with centers; thus the fixed points are dynamically unstable and control is required. A natural mechanism of control presents itself: variations in the sail's orientation. We describe an optimal controller to control the sail onto fixed points and periodic orbits about fixed points. We find this controller to be very robust, and define sets of initial data using spherical coordinates to get a sense of the domain of controllability; we also perform a series of tests for control onto periodic orbits. We then present some mission strategies involving transfer form the Earth to fixed points and onto periodic orbits, and controlled heteroclinic transfers between fixed points on opposite sides of the Earth. Finally we present some novel methods to finding periodic orbits in circumstances where traditional methods break down, based on considerations of the Center Manifold theorem.