Low-fidelity modelling for aerodynamic characteristics of re-entry objects

Benedetti, Gianluca and Viola, Nicole and Minisci, Edmondo and Falchi, Alessandro and Vasile, Massimiliano; Vasile, Massimiliano and Minisci, Edmondo and Summerer, Leopold and Mcginty, Peter, eds. (2018) Low-fidelity modelling for aerodynamic characteristics of re-entry objects. In: Stardust Final Conference. Astrophysics and Space Science Proceedings . Springer Netherlands, Cham, pp. 247-264. ISBN 978-3-319-69956-1 (https://doi.org/10.1007/978-3-319-69956-1_15)

Full text not available in this repository.Request a copy

Abstract

This work presents the principal improvements and results of the Free Open Source Tool for Re-Entry of Asteroids and Debris aerodynamic module. The aerodynamic routines are based on the hypersonic local panel formulations, and several innovations to improve performances, in terms of computational time and accuracy across the hypersonic flow regime for re-entry of space vehicles and objects, have been introduced in the new version. A graphic-based preprocessing phase to reduce the computational time has been introduced and tested. New bridging functions, based on logistic regression model, aiming at providing a better estimate of aerodynamic outputs in the transitional flow regime have been introduced. The routines have been validated on different test cases, such as: spheres, STS orbiter, Orion capsule and ESA’s IXV. In addition, the tool has been applied to perform the aerodynamic analyses of the cFASTT-1 spaceplane conceptual model and to compute the aerodynamics of GOCE during its re-entry phase. GOCE aerodynamic results have also been compared to DSMC high-fidelity simulations.