Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Synthesis, structure and theoretical studies of the hydrido inverse crown [K2Mg2(NiPr2)(4)(mu-H)(2)center dot(toluene)(2)] : a rare example of a molecular magnesium hydride with a Mg-(mu-H)(2)-Mg double bridge

Andrikopoulos, P.C. and Armstrong, D.R. and Kennedy, A.R. and Mulvey, R.E. and O'Hara, C.T. and Rowlings, R.B. (2003) Synthesis, structure and theoretical studies of the hydrido inverse crown [K2Mg2(NiPr2)(4)(mu-H)(2)center dot(toluene)(2)] : a rare example of a molecular magnesium hydride with a Mg-(mu-H)(2)-Mg double bridge. European Journal of Inorganic Chemistry, 2003 (18). pp. 3354-3362. ISSN 1434-1948

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Reaction of benzylpotassium, n,s-dibutylmagnesium and diisopropylamine in boiling toluene produces a rare example of a molecular magnesium hydride with a Mg-(mu-H)(2)-Mg double bridge, in [K2Mg2(NiPr2)(4)(mu-H)(2).(toluene)(2)] (1). In an effort to rationalise the formation of 1, a series of DFT calculations were performed. This report of 1 establishes the first isostructural pair of Na and K complexes solvated by toluene to be reported in the Cambridge Crystallographic Database. In comparison with its previously reported Na analogue, 2, the metal-arene centroid distances are considerably shorter (by 0.159 Angstrom) in the new complex reported here. It was found that a hydrocarbon solution of 1 is capable of reducing benzophenone to benzhydrol in moderate yields (74%).