Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Synthesis, structure and theoretical studies of the hydrido inverse crown [K2Mg2(NiPr2)(4)(mu-H)(2)center dot(toluene)(2)] : a rare example of a molecular magnesium hydride with a Mg-(mu-H)(2)-Mg double bridge

Andrikopoulos, P.C. and Armstrong, D.R. and Kennedy, A.R. and Mulvey, R.E. and O'Hara, C.T. and Rowlings, R.B. (2003) Synthesis, structure and theoretical studies of the hydrido inverse crown [K2Mg2(NiPr2)(4)(mu-H)(2)center dot(toluene)(2)] : a rare example of a molecular magnesium hydride with a Mg-(mu-H)(2)-Mg double bridge. European Journal of Inorganic Chemistry, 2003 (18). pp. 3354-3362. ISSN 1434-1948

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Reaction of benzylpotassium, n,s-dibutylmagnesium and diisopropylamine in boiling toluene produces a rare example of a molecular magnesium hydride with a Mg-(mu-H)(2)-Mg double bridge, in [K2Mg2(NiPr2)(4)(mu-H)(2).(toluene)(2)] (1). In an effort to rationalise the formation of 1, a series of DFT calculations were performed. This report of 1 establishes the first isostructural pair of Na and K complexes solvated by toluene to be reported in the Cambridge Crystallographic Database. In comparison with its previously reported Na analogue, 2, the metal-arene centroid distances are considerably shorter (by 0.159 Angstrom) in the new complex reported here. It was found that a hydrocarbon solution of 1 is capable of reducing benzophenone to benzhydrol in moderate yields (74%).