Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Characterisation and modelling of in-plane springback in a commercially pure titanium (CP-Ti)

Khayatzadeh, S. and Thomas, M. J. and Millet, Y. and Rahimi, S. (2018) Characterisation and modelling of in-plane springback in a commercially pure titanium (CP-Ti). Journal of Materials Science. ISSN 0022-2461

[img]
Preview
Text (Khayatzadeh-etal-JMS-2017-Characterisation-and-modelling-of-in-plane-springback)
Khayatzadeh_etal_JMS_2017_Characterisation_and_modelling_of_in_plane_springback.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (4MB)| Preview

    Abstract

    Effective prediction of springback during sheet metal forming is critically important for automotive and aerospace industries, especially when forming metals with high strength to weight ratio such as Titanium. This requires materials mechanical data during plastic deformation and their dependencies on parameters like strain, strain rate and sample orientation. In this study, springback is quantified experimentally as elastic strain recovery, degradation in Young’s modulus and inelastic strain recovery on unloading in a commercially pure titanium type 50A (CP-Ti-50A). The results show strain rate dependent anisotropic mechanical behaviours and a degradation in Young’s modulus with increased level of plastic deformation. The level of degradation in Young’s modules increases gradually from 13% for samples parallel to the rolling direction (RD) to 20% for those perpendicular to the RD. A measurable non-linear strain recovery was also observed on unloading that is orientation dependent. The level of springback is characterised as the sum of elastic recovery and the contributions from both the degradation in Young’s modulus and anelastic strain recovery. It is shown that the Chord modulus can estimate springback with a reasonable accuracy taking into consideration the elastic strain recovery, degradation in Young’s modulus and anelastic strain recovery.