Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Dynamics stability and control of displaced non-Keplerian orbits

Bookless, J. and McInnes, C.R. (2004) Dynamics stability and control of displaced non-Keplerian orbits. In: Proceedings of the 55th International Astronautical Congress. American Institute of Aeronautics and Astronautics, p. 173.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The dynamics, stability, and control of a large family of non-Keplerian orbits are investigated and mission applications are discussed. The orbits are generated by seeking equilibrium solutions to the two-body problem in a rotating frame of reference with an additional thrust-induced acceleration. Viewed from an inertial frame of reference, displaced circular orbits are obtained. Three main families of orbits are presented, and their local stability characteristics are investigated. Although it is found that there are unstable subfamilies of orbits, it is also shown that these orbits are controllable using linear state feedback. Impulse control is also investigated as a means of generating displaced orbits and is compared to continuous thrust control. It is demonstrated that these non-Keplerian orbits can be patched together to provide large additional families of orbits.