Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Silicon photonic processor of two-qubit entangling quantum logic

Santagati, R and Silverstone, J W and Strain, M J and Sorel, M and Miki, S and Yamashita, T and Fujiwara, M and Sasaki, M and Terai, H and Tanner, M G and Natarajan, C M and Hadfield, R H and O'Brien, J L and Thompson, M G (2017) Silicon photonic processor of two-qubit entangling quantum logic. Journal of Optics (United Kingdom), 19 (11). ISSN 2040-8978

[img]
Preview
Text (Santagati-etal-JO-2017-Silicon-photonic-processor-of-two-qubit-entangling-quantum-logic)
Santagati_etal_JO_2017_Silicon_photonic_processor_of_two_qubit_entangling_quantum_logic.pdf
Final Published Version
License: Creative Commons Attribution 3.0 logo

Download (2MB)| Preview

    Abstract

    Entanglement is a fundamental property of quantum mechanics, and is a primary resource in quantum information systems. Its manipulation remains a central challenge in the development of quantum technology. In this work, we demonstrate a device which can generate, manipulate, and analyse two-qubit entangled states, using miniature and mass-manufacturable silicon photonics. By combining four photon-pair sources with a reconfigurable six-mode interferometer, embedding a switchable entangling gate, we generate two-qubit entangled states, manipulate their entanglement, and analyse them, all in the same silicon chip. Using quantum state tomography, we show how our source can produce a range of entangled and separable states, and how our switchable controlled-Z gate operates on them, entangling them or making them separable depending on its configuration.