Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Spacecraft planetary capture using gravity assist manoeuvres

Macdonald, M. and McInnes, C.R. (2005) Spacecraft planetary capture using gravity assist manoeuvres. Journal of Guidance, Control and Dynamics, 28 (2). pp. 365-369. ISSN 1533-3884

[img] Microsoft Word (McInnes_CR_&_Macdonald_M_-_strathprints_-_Spacecraft_planetary_capture_using_gravity_assist_manoeuvres_Mar_2010.doc)
McInnes_CR_&_Macdonald_M_-_strathprints_-_Spacecraft_planetary_capture_using_gravity_assist_manoeuvres_Mar_2010.doc

Download (154kB)

Abstract

If the arrival speed at a target body can be increased from the very low hyperbolic excesses required to perform a low-thrust capture maneuver, then potentially significant savings can be made in the heliocentric mission duration if a bound orbit about the target planet can be maintained. We define a bound orbit as having an apoapsis that is positive but less than infinity; however, because this is not a practical limit and is instead a theoretical limit we examine the impact of reducing the target apoapsis to more realistic and useful values within specific case studies. Furthermore, an increase in arrival velocity can be expected to yield a benefit in mission launch mass.