DW-ZCC code based on SAC-OCDMA deploying multi-wavelength laser source for wireless optical networks
Moghaddasi, Majid and Seyedzadeh, Saleh and Glesk, Ivan and Lakshminarayana, Gandham and Anas, Siti Barirah Ahmad (2017) DW-ZCC code based on SAC-OCDMA deploying multi-wavelength laser source for wireless optical networks. Optical and Quantum Electronics, 49. 393. ISSN 0306-8919
|
Text (Moghaddasi-etal-OQE-2018-DW-ZCC-code-based-on-SAC-OCDMA-deploying-multi-wavelength-laser-source)
Moghaddasi_etal_OQE_2018_DW_ZCC_code_based_on_SAC_OCDMA_deploying_multi_wavelength_laser_source.pdf Accepted Author Manuscript Download (3MB)| Preview |
Abstract
In this paper, double weight zero cross correlation (DW-ZCC) code is proposed for spectral amplitude coding optical code division multiple access (SAC OCDMA) system. DW-ZCC takes the advantages of two previously proposed SAC-codes namely modified double weight (MDW) and zero-cross correlation (ZCC) codes, while providing optimized code length and maximum cross-correlation of zero. Although the proposed code can be utilized in SAC-OCDMA system with any optical medium, this research work focuses on outdoor wireless optical networks (WON) deploying multi-wavelength laser (MWL) source, where optical bandwidth is much limited. The mathematical and simulation analysis of proposed system employing direct decoding (DD) is developed, considering the influences of turbulence and system noises including relative intensity noise, optical beat interference (OBI) and receiver noises. It is shown that employing DD detection; it is possible to completely avoid OBI which enhances system capability. The results show that SAC-OCDMA-WON system is noticeably improved using DW-ZCC in term of transmission distance by at least 200 m in comparison with MDW and conventional ZCC codes.
Creators(s): |
Moghaddasi, Majid, Seyedzadeh, Saleh, Glesk, Ivan ![]() | Item type: | Article |
---|---|
ID code: | 62174 |
Keywords: | spectral amplitude coding, wireless optical networks, free space optics (FSO), multi-wavelength laser, optical code division multiple access (OCDMA), Electrical engineering. Electronics Nuclear engineering, Optics. Light, Electrical and Electronic Engineering, Computer Networks and Communications |
Subjects: | Technology > Electrical engineering. Electronics Nuclear engineering Science > Physics > Optics. Light |
Department: | Faculty of Engineering Faculty of Engineering > Electronic and Electrical Engineering |
Depositing user: | Pure Administrator |
Date deposited: | 30 Oct 2017 10:39 |
Last modified: | 21 Jan 2021 09:37 |
URI: | https://strathprints.strath.ac.uk/id/eprint/62174 |
Export data: |