Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Halide abstraction competes with oxidative addition in the reactions of aryl halides with [Ni(PMenPh(3-n))4]

Funes-Ardoiz, Ignacio and Nelson, David J. and Maseras, Feliu (2017) Halide abstraction competes with oxidative addition in the reactions of aryl halides with [Ni(PMenPh(3-n))4]. Chemistry - A European Journal, 23 (66). pp. 16728-16733. ISSN 0947-6539

[img]
Preview
Text (Funes-Ardoiz-CEJ2017-Halide-abstraction-competes-with-oxidative-addition-in-the-reactions)
Funes_Ardoiz_CEJ2017_Halide_abstraction_competes_with_oxidative_addition_in_the_reactions.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview

    Abstract

    Density functional theory (DFT) calculations have been used to study the oxidative addition of aryl halides to complexes of the type [Ni(PMenPh(3-n))4], revealing the crucial role of an open shell singlet transition state for halide abstraction. The formation of NiI versus NiII has been rationalised through the study of three different pathways: (i) halide abstraction by [Ni(PMenPh(3-n))3], via an open shell singlet transition state; (ii) SN2-type oxidative addition to [Ni(PMenPh(3-n))3], followed by phosphine dissociation; and (iii) oxidative addition to [Ni(PMenPh(3-n))2]. For the case of [Ni(PMe3)4], a microkinetic model was used to show that these data are consistent with the experimentally-observed ratios of NiI and NiII. Importantly, [Ni(PMenPh(3-n))2] complexes often have little if any role in the oxidative addition reaction because they are relatively high in energy. The behaviour of [Ni(PR3)4] complexes in catalysis is therefore likely to differ considerably from those based on diphosphine ligands in which two coordinate Ni0 complexes are the key species undergoing oxidative addition.