Halide abstraction competes with oxidative addition in the reactions of aryl halides with [Ni(PMenPh(3-n))4]
Funes-Ardoiz, Ignacio and Nelson, David J. and Maseras, Feliu (2017) Halide abstraction competes with oxidative addition in the reactions of aryl halides with [Ni(PMenPh(3-n))4]. Chemistry - A European Journal, 23 (66). pp. 16728-16733. ISSN 0947-6539
|
Text (Funes-Ardoiz-CEJ2017-Halide-abstraction-competes-with-oxidative-addition-in-the-reactions)
Funes_Ardoiz_CEJ2017_Halide_abstraction_competes_with_oxidative_addition_in_the_reactions.pdf Final Published Version License: ![]() Download (1MB)| Preview |
Abstract
Density functional theory (DFT) calculations have been used to study the oxidative addition of aryl halides to complexes of the type [Ni(PMenPh(3-n))4], revealing the crucial role of an open shell singlet transition state for halide abstraction. The formation of NiI versus NiII has been rationalised through the study of three different pathways: (i) halide abstraction by [Ni(PMenPh(3-n))3], via an open shell singlet transition state; (ii) SN2-type oxidative addition to [Ni(PMenPh(3-n))3], followed by phosphine dissociation; and (iii) oxidative addition to [Ni(PMenPh(3-n))2]. For the case of [Ni(PMe3)4], a microkinetic model was used to show that these data are consistent with the experimentally-observed ratios of NiI and NiII. Importantly, [Ni(PMenPh(3-n))2] complexes often have little if any role in the oxidative addition reaction because they are relatively high in energy. The behaviour of [Ni(PR3)4] complexes in catalysis is therefore likely to differ considerably from those based on diphosphine ligands in which two coordinate Ni0 complexes are the key species undergoing oxidative addition.
Creators(s): |
Funes-Ardoiz, Ignacio, Nelson, David J. ![]() | Item type: | Article |
---|---|
ID code: | 62120 |
Keywords: | density fuctional calculations, homogenous catalysis, nickel, electron transfer, ligand effects, Chemistry, Chemistry(all) |
Subjects: | Science > Chemistry |
Department: | Faculty of Science > Pure and Applied Chemistry |
Depositing user: | Pure Administrator |
Date deposited: | 23 Oct 2017 11:10 |
Last modified: | 22 Feb 2021 02:42 |
Related URLs: | |
URI: | https://strathprints.strath.ac.uk/id/eprint/62120 |
Export data: |