Drug repositioning : a machine-learning approach through data integration

Napolitano, Francesco and Zhao, Yan and Moreira, Vânia M and Tagliaferri, Roberto and Kere, Juha and D'Amato, Mauro and Greco, Dario (2013) Drug repositioning : a machine-learning approach through data integration. Journal of Cheminformatics, 5 (1). 30. ISSN 1758-2946

[img]
Preview
Text (Napolitano-etal-JOC-2013-Drug-repositioning-a-machine-learning-approach)
Napolitano_etal_JOC_2013_Drug_repositioning_a_machine_learning_approach.pdf
Final Published Version
License: Creative Commons Attribution 2.5 logo

Download (916kB)| Preview

    Abstract

    Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses.