Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Maximum observable correlation for a bipartite quantum system

Hall, Michael J.W. and Andersson, Erika and Brougham, Thomas (2006) Maximum observable correlation for a bipartite quantum system. Physical Review A, 74 (6). 062308-1. ISSN 1094-1622

PDF (strathprints006197.pdf)
Accepted Author Manuscript

Download (260kB) | Preview


The maximum observable correlation between the two components of a bipartite quantum system is a property of the joint density operator, and is achieved by making particular measurements on the respective components. For pure states it corresponds to making measurements diagonal in a corresponding Schmidt basis. More generally, it is shown that the maximum correlation may be characterized in terms of a correlation basis for the joint density operator, which defines the corresponding (nondegenerate) optimal measurements. The maximum coincidence rate for spin measurements on two-qubit systems is determined to be (1+s)/2, where s is the spectral norm of the spin correlation matrix, and upper bounds are obtained for n-valued measurements on general bipartite systems. It is shown that the maximum coincidence rate is never greater than the computable cross norm measure of entanglement, and a much tighter upper bound is conjectured. Connections with optimal state discrimination and entanglement bounds are briefly discussed.