Fast multipole preconditioners for sparse matrices arising from elliptic equations

Ibeid, Huda and Yokota, Rio and Pestana, Jennifer and Keyes, David (2018) Fast multipole preconditioners for sparse matrices arising from elliptic equations. Computing and Visualization in Science, 18 (6). pp. 213-229. ISSN 1433-0369 (https://doi.org/10.1007/s00791-017-0287-5)

[thumbnail of Ibeid-etal-CVS-2017-Fast-multipole-preconditioners-for-sparse-matrices-arising-from-elliptic-equations]
Preview
Text. Filename: Ibeid_etal_CVS_2017_Fast_multipole_preconditioners_for_sparse_matrices_arising_from_elliptic_equations.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview

Abstract

Among optimal hierarchical algorithms for the computational solution of elliptic problems, the Fast Multipole Method (FMM) stands out for its adaptability to emerging architectures, having high arithmetic intensity, tunable accuracy, and relaxable global synchronization requirements. We demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for satisfying conditions at finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Here, we do not discuss the well developed applications of FMM to implement matrix-vector multiplications within Krylov solvers of boundary element methods. Instead, we propose using FMM for the volume-to-volume contribution of inhomogeneous Poisson-like problems, where the boundary integral is a small part of the overall computation. Our method may be used to precondition sparse matrices arising from finite difference/element discretizations, and can handle a broader range of scientific applications. It is capable of algebraic convergence rates down to the truncation error of the discretized PDE comparable to those of multigrid methods, and it offers potentially superior multicore and distributed memory scalability properties on commodity architecture supercomputers. Compared with other methods exploiting the low-rank character of off-diagonal blocks of the dense resolvent operator, FMM-preconditioned Krylov iteration may reduce the amount of communication because it is matrix-free and exploits the tree structure of FMM. We describe our tests in reproducible detail with freely available codes and outline directions for further extensibility.

ORCID iDs

Ibeid, Huda, Yokota, Rio, Pestana, Jennifer ORCID logoORCID: https://orcid.org/0000-0003-1527-3178 and Keyes, David;