Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

A comparison of iterative and DFT-based polynomial matrix eigenvalue decompositions

Coutts, Fraser K. and Thompson, Keith and Proudler, Ian K. and Weiss, Stephan (2017) A comparison of iterative and DFT-based polynomial matrix eigenvalue decompositions. In: IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2017-12-10 - 2017-12-13.

[img]
Preview
Text (Coutts-etal-CAMSAP-2017-comparison-of-iterative-and-DFT-based-polynomial-matrix-Eigenvalue-decompositions)
Coutts_etal_CAMSAP_2017_comparison_of_iterative_and_DFT_based_polynomial_matrix_Eigenvalue_decompositions.pdf
Accepted Author Manuscript

Download (169kB) | Preview

Abstract

A variety of algorithms have been developed to compute an approximate polynomial matrix eigenvalue decomposition (PEVD). As an extension of the ordinary EVD to polynomial matrices, the PEVD will generate paraunitary matrices that diagonalise a parahermitian matrix. This paper compares the decomposition accuracies of two fundamentally different methods capable of computing an approximate PEVD. The first of these --- sequential matrix diagonalisation (SMD) --- iteratively decomposes a parahermitian matrix, while the second DFT-based algorithm computes a pointwise in frequency decomposition. We demonstrate through the use of examples that both algorithms can achieve varying levels of decomposition accuracy, and provide results that indicate the type of broadband multichannel problems that are better suited to each algorithm. It is shown that iterative methods, which generate paraunitary eigenvectors, are suited for general applications with a low number of sensors, while a DFT-based approach is useful for fixed, finite order decompositions with a small number of lags.