Picture of rolled up £5 note

Open Access research that shapes economic thinking...

Strathprints makes available scholarly Open Access content by the Fraser of Allander Institute (FAI), a leading independent economic research unit focused on the Scottish economy and based within the Department of Economics. The FAI focuses on research exploring economics and its role within sustainable growth policy, fiscal analysis, energy and climate change, labour market trends, inclusive growth and wellbeing.

The open content by FAI made available by Strathprints also includes an archive of over 40 years of papers and commentaries published in the Fraser of Allander Economic Commentary, formerly known as the Quarterly Economic Commentary. Founded in 1975, "the Commentary" is the leading publication on the Scottish economy and offers authoritative and independent analysis of the key issues of the day.

Explore Open Access research by FAI or the Department of Economics - or read papers from the Commentary archive [1975-2006] and [2007-2018]. Or explore all of Strathclyde's Open Access research...

A comparison of iterative and DFT-based polynomial matrix eigenvalue decompositions

Coutts, Fraser K. and Thompson, Keith and Proudler, Ian K. and Weiss, Stephan (2017) A comparison of iterative and DFT-based polynomial matrix eigenvalue decompositions. In: IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2017-12-10 - 2017-12-13.

[img]
Preview
Text (Coutts-etal-CAMSAP-2017-comparison-of-iterative-and-DFT-based-polynomial-matrix-Eigenvalue-decompositions)
Coutts_etal_CAMSAP_2017_comparison_of_iterative_and_DFT_based_polynomial_matrix_Eigenvalue_decompositions.pdf
Accepted Author Manuscript

Download (169kB) | Preview

Abstract

A variety of algorithms have been developed to compute an approximate polynomial matrix eigenvalue decomposition (PEVD). As an extension of the ordinary EVD to polynomial matrices, the PEVD will generate paraunitary matrices that diagonalise a parahermitian matrix. This paper compares the decomposition accuracies of two fundamentally different methods capable of computing an approximate PEVD. The first of these --- sequential matrix diagonalisation (SMD) --- iteratively decomposes a parahermitian matrix, while the second DFT-based algorithm computes a pointwise in frequency decomposition. We demonstrate through the use of examples that both algorithms can achieve varying levels of decomposition accuracy, and provide results that indicate the type of broadband multichannel problems that are better suited to each algorithm. It is shown that iterative methods, which generate paraunitary eigenvectors, are suited for general applications with a low number of sensors, while a DFT-based approach is useful for fixed, finite order decompositions with a small number of lags.