Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Quotienting the delay monad by weak bisimilarity

Chapman, James and Uustalu, Tarmo and Veltri, Niccolò (2017) Quotienting the delay monad by weak bisimilarity. Mathematical Structures in Computer Science. pp. 1-26. ISSN 0960-1295

[img] Text (Chapman-etal-MSCS2017-Quotienting-the-delay-monad-by-weak-bisimilarity)
Chapman_etal_MSCS2017_Quotienting_the_delay_monad_by_weak_bisimilarity.pdf
Accepted Author Manuscript
Restricted to Repository staff only until 17 April 2018.

Download (481kB) | Request a copy from the Strathclyde author

Abstract

The delay datatype was introduced by Capretta (2005) as a means to deal with partial functions (as in computability theory) in Martin-Löf type theory. The delay datatype is a monad. It is often desirable to consider two delayed computations equal, if they terminate with equal values, whenever one of them terminates. The equivalence relation underlying this identification is called weak bisimilarity. In type theory, one commonly replaces quotients with setoids. In this approach, the delay datatype quotiented by weak bisimilarity is still a monad—a constructive alternative to the maybe monad. In this paper, we consider the alternative approach of Hofmann (1997) of extending type theory with inductive-like quotient types. In this setting, it is difficult to define the intended monad multiplication for the quotiented datatype. We give a solution where we postulate some principles, crucially proposition extensionality and the (semi-classical) axiom of countable choice. With the aid of these principles, we also prove that the quotiented delay datatype delivers free ω-complete pointed partial orders (ωcppos). Altenkirch et al. (2017) demonstrated that, in homotopy type theory, a certain higher inductive-inductive type is the free ωcppo on a type X essentially by definition; this allowed them to obtain a monad of free ωcppos without recourse to a choice principle. We notice that, by a similar construction, a simpler ordinary higher inductive type gives the free countably-complete join semilattice on the unit type 1. This type suffices for constructing a monad which is isomorphic to the one of Altenkirch et al. We have fully formalized our results in the Agda dependently typed programming language.