Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Statistical multi-criteria evaluation of non-nuclear asteroid deflection methods

Thiry, Nicolas and Vasile, Massimiliano (2017) Statistical multi-criteria evaluation of non-nuclear asteroid deflection methods. Acta Astronautica, 140. pp. 293-307. ISSN 0094-5765

[img]
Preview
Text (Thiry-Vasile-AA2017-Statistical-multi-criteria-evaluation-of-non-nuclear-asteroid)
Thiry_Vasile_AA2017_Statistical_multi_criteria_evaluation_of_non_nuclear_asteroid.pdf
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (1MB)| Preview

    Abstract

    In this paper we assess and compare the effectiveness of four classes of non-nuclear asteroid deflection methods applied to a wide range of virtual collision scenarios. We consider the kinetic impactor, laser ablation, the ion beaming technique and two variants of the gravity tractor. A simple but realistic model of each deflection method was integrated within a systematic approach to size the spacecraft and predict the achievable deflection for a given mission and a given maximum mass at launch. A sample of 100 synthetic asteroids was then created from the current distribution of NEAs and global optimisation methods were used to identify the optimal solution in each case according to two criteria: the minimum duration between the departure date and the time of virtual impact required to deflect the NEA by more than two Earth radii and the maximum miss-distance achieved within a total duration of 10 years. Our results provide an interesting insight into the range of applicability of individual deflection methods and argue the need to develop multiple methods in parallel for a global mitigation of all possible threats.