Lattice design and expected performance of the muon ionization cooling experiment demonstration of ionization cooling

Bogomilov, M. and Young, A. R. and Ronald, K. and Whyte, C. G. and Dick, A. J., The MICE collaboration (2017) Lattice design and expected performance of the muon ionization cooling experiment demonstration of ionization cooling. Physical Review Accelerators and Beams, 20 (6). 063501. ISSN 2469-9888 (https://doi.org/10.1103/PhysRevAccelBeams.20.06350...)

[thumbnail of Bogomilov-etal-PRAB-2017-Lattice-design-and-expected-performance-of-the-Muon]
Preview
Text. Filename: Bogomilov_etal_PRAB_2017_Lattice_design_and_expected_performance_of_the_Muon.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (950kB)| Preview

Abstract

Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at a neutrino factory and to provide lepton-antilepton collisions at energies of up to several TeV at a muon collider. The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam passes through a material in which it loses energy. The energy lost is then replaced using RF cavities. The combined effect of energy loss and re-acceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised experiment can deliver a demonstration of ionization cooling. The design of the cooling demonstration experiment will be described together with its predicted cooling performance.