Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

A new ceramide along with eight known compounds from the roots of Artemisia incisa pamp

Mamoon-Ur-Rashid, and Alamzeb, Muhammad and Ali, Saqib and Khan, Ashfaq Ahmad and Igoli, John O and Ferro, Valerie A and Gray, Alexander Irvine and Khan, Mohammad Rafiullah (2015) A new ceramide along with eight known compounds from the roots of Artemisia incisa pamp. Records of Natural Products, 9 (3). pp. 297-304. ISSN 1307-6167

[img]
Preview
Text (Mamoon-Ur-Rashid-etal-RNP-2015-A-new-ceramide-along-with-eight-known-compounds)
Mamoon_Ur_Rashid_etal_RNP_2015_A_new_ceramide_along_with_eight_known_compounds.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (599kB) | Preview

Abstract

A new compound (1) (named as artemceramide-B) together with eight known compounds (taraxerol (2), taraxerol acetate (3), β-sitosterol (4), stigmasterol (5), trans-ethyl caffeate, dracunculin (7), scoparone (8) and isoscopoletin (9) were isolated from an ethanolic extract of the roots of Artemisia incisa Pamp (Asteracae). The structures of the compounds were determined through IR, 1D NMR (1H NMR, 13C NMR) and 2D NMR (COSY, NOESY, HSQC and HMBC) analyses. Accurate mass analyses were done with EI-MS, ESI-MS and acid methanolysis of compound 1 followed by GS-MS studies. The relative stereochemistry of artemceramide-B was determined by comparing its specific rotation and spectroscopic data with the literature. Compounds 1-9 were tested for their anti-bacterial potential against five bacteria strains; Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella pneumoniae, Bacillus subtilis and Escherichia coli. Compound 1 (new) (MIC: 0.0157, 0.0313 mg/mL) and 7 (MIC: 0.0815 , 1.000 mg/mL) showed excellent activities against S. epidermidis and S. aureus while compound 9 showed excellent activities (MIC: 0.0700 , 1.234, 1.890 and 2.286 mg/mL) against S. epidermidis,S. aureus, K. pneumoniae and E. coli, respectively. Compound 6 (MIC: 2.000 mg/mL) was found to be active against E. coli while neither of the compounds showed potential activity against B. subtilis.