GW170104 : Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2

Abbott, B. P. and Jawahar, S. and Lockerbie, N. A. and Tokmakov, K. V., LIGO Scientific Collaboration, Virgo Collaboration (2017) GW170104 : Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Physical Review Letters, 118 (22). 221101. ISSN 0031-9007

[img]
Preview
Text (Abbott-etal-PRL-2017-GW170104-observation-of-a-50-solar-mass-binary-black-hole-coalescence)
Abbott_etal_PRL_2017_GW170104_observation_of_a_50_solar_mass_binary_black_hole_coalescence.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview

    Abstract

    We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2+8.4−6.0M⊙ and 19.4+5.3−5.9M⊙ (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χeff=−0.12+0.21−0.30. This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880+450−390  Mpc corresponding to a redshift of z=0.18+0.08−0.07. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to mg≤7.7×10−23  eV/c2. In all cases, we find that GW170104 is consistent with general relativity.