GW170104 : Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2
Abbott, B. P. and Jawahar, S. and Lockerbie, N. A. and Tokmakov, K. V., LIGO Scientific Collaboration, Virgo Collaboration (2017) GW170104 : Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Physical Review Letters, 118 (22). 221101. ISSN 1079-7114 (https://doi.org/10.1103/PhysRevLett.118.221101)
Preview |
Text.
Filename: Abbott_etal_PRL_2017_GW170104_observation_of_a_50_solar_mass_binary_black_hole_coalescence.pdf
Final Published Version License: Download (1MB)| Preview |
Abstract
We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2+8.4−6.0M⊙ and 19.4+5.3−5.9M⊙ (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χeff=−0.12+0.21−0.30. This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880+450−390 Mpc corresponding to a redshift of z=0.18+0.08−0.07. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to mg≤7.7×10−23 eV/c2. In all cases, we find that GW170104 is consistent with general relativity.
ORCID iDs
Abbott, B. P., Jawahar, S. ORCID: https://orcid.org/0000-0002-4945-691X, Lockerbie, N. A. ORCID: https://orcid.org/0000-0002-1678-3260 and Tokmakov, K. V. ORCID: https://orcid.org/0000-0002-2808-6593;-
-
Item type: Article ID code: 61393 Dates: DateEvent1 June 2017Published9 May 2017AcceptedSubjects: Science > Physics Department: Faculty of Science > Physics Depositing user: Pure Administrator Date deposited: 28 Jul 2017 08:53 Last modified: 15 Jan 2025 01:53 URI: https://strathprints.strath.ac.uk/id/eprint/61393