Simulation-based validation of smart grids - status quo and future research trends
Steinbrink, C. and Lehnhoff, S. and Rohjans, S. and Strasser, T. I. and Widl, E. and Moyo, C. and Lauss, G. and Lehfuss, F. and Faschang, M. and Palensky, P. and van der Meer, A. A. and Heussen, K. and Gehrke, O. and Guillo Sansano, E. and Syed, M. H. and Emhemed, A. and Brandl, R. and Nguyen, V. H. and Khavari, A. and Tran, Q.T. and Kotsampopoulos, P. and Hatziargyriou, N. and Akroud, N. and Rikos, E. and Degefa, M.Z.; (2017) Simulation-based validation of smart grids - status quo and future research trends. In: Proceedings of 8th International Conference on Industrial Applications of Holonic and Multi-Agent Systems. Lecture Notes in Computer Science - Lecture Notes in Artificial Intelligence (LNAI) . IEEE, FRA, pp. 171-185. (https://doi.org/10.1007/978-3-319-64635-0_13)
Preview |
Text.
Filename: Steinbrink_etal_HoloMAS_2017_Simulation_based_validation_of_smart_grids_status.pdf
Accepted Author Manuscript Download (425kB)| Preview |
Abstract
Smart grid systems are characterized by high complexity due to interactions between a traditional passive network and active power electronic components, coupled using communication links. Additionally, automation and information technology plays an important role in order to operate and optimize such cyber-physical energy systems with a high(er) penetration of fluctuating renewable generation and controllable loads. As a result of these developments the validation on the system level becomes much more important during the whole engineering and deployment process, today. In earlier development stages and for larger system configurations laboratory-based testing is not always an option. Due to recent developments, simulation-based approaches are now an appropriate tool to support the development, implementation, and rollout of smart grid solutions. This paper discusses the current state of simulation-based approaches and outlines the necessary future research and development directions in the domain of power and energy systems.
ORCID iDs
Steinbrink, C., Lehnhoff, S., Rohjans, S., Strasser, T. I., Widl, E., Moyo, C., Lauss, G., Lehfuss, F., Faschang, M., Palensky, P., van der Meer, A. A., Heussen, K., Gehrke, O., Guillo Sansano, E. ORCID: https://orcid.org/0000-0002-2773-4157, Syed, M. H. ORCID: https://orcid.org/0000-0003-3147-0817, Emhemed, A. ORCID: https://orcid.org/0000-0002-4635-0167, Brandl, R., Nguyen, V. H., Khavari, A., Tran, Q.T., Kotsampopoulos, P., Hatziargyriou, N., Akroud, N., Rikos, E. and Degefa, M.Z.;-
-
Item type: Book Section ID code: 61030 Dates: DateEvent1 August 2017Published1 June 2017AcceptedNotes: © 2017 Springer Nature Steinbrink, C. et al. (2017). Simulation-Based Validation of Smart Grids – Status Quo and Future Research Trends. In: Mařík, V., Wahlster, W., Strasser, T., Kadera, P. (eds) Industrial Applications of Holonic and Multi-Agent Systems. HoloMAS 2017. Lecture Notes in Computer Science(), vol 10444. Springer, Cham. https://doi.org/10.1007/978-3-319-64635-0_13 Subjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering Depositing user: Pure Administrator Date deposited: 21 Jun 2017 13:54 Last modified: 11 Nov 2024 15:10 URI: https://strathprints.strath.ac.uk/id/eprint/61030