Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

Structured illumination for communications and bioscience using GaN micro-LED arrays interfaced to CMOS

McKendry, Jonathan and Xie, Enyuan and Herrnsdorf, Johannes and McAlinden, Niall and Gu, Erdan and Watson, Ian and Strain, Michael and Mathieson, Keith and Dawson, Martin (2017) Structured illumination for communications and bioscience using GaN micro-LED arrays interfaced to CMOS. In: Emerging Technologies in Communications, Microsystems, Optoelectronics and Sensors, 2017-05-28 - 2017-05-30, Sofitel Victoria Warszaw.

Text (McKendry-etal-ETCMOS-2017-Structured-illumination-for-communications-and-bioscience-using-GaN-micro-LED-arrays)
Final Published Version

Download (2MB) | Preview


Gallium-Nitride-based light-emitting diodes (LEDs) have emerged over the last two decades as highly energy-efficient, cost-effective, compact and robust light sources. While general purpose lighting has been the dominant application thus far, a variety of other applications can also exploit these advantageous properties, including optical communications, fluorescence sensing and bioscience. Micro-LEDs arrays of individually-addressable LED pixels, each pixel typically 100 µm or less, offer further advantages over conventional LEDs such as extremely high modulation bandwidths and spatio-temporally controllable illumination patterns. These arrays are also readily compatible with flip-chip integration with CMOS electronic driver arrays. Here we report how these CMOS-controlled micro-LED arrays enable “smart lighting” solutions, capable of providing services such as wireless data communication and indoor navigation in conjunction with illumination. We also demonstrate how this smart functionality opens up novel bioscience applications, including depth-specific in-vivo optical neural probes and wireless transfer of measured data.