Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

On the energy-momentum tensor of light in strong fields : an all optical view of the Abraham-Minkowski controversy

MacLeod, Alexander J. and Noble, Adam and Jaroszynski, Dino A. (2017) On the energy-momentum tensor of light in strong fields : an all optical view of the Abraham-Minkowski controversy. In: Relativistic Plasma Waves and Particle Beams as Coherent and Incoherent Radiation Sources II. Proceedings of SPIE . Society of Photo-optical Instrumentation Engineers (SPIE), Bellingham, Washington. ISBN 9781510609693

[img]
Preview
Text (Macleod-etal-PSPIE-2017-On-the-energy-momentum-tensor-of-light-in-strong-fields)
Macleod_etal_PSPIE_2017_On_the_energy_momentum_tensor_of_light_in_strong_fields.pdf
Accepted Author Manuscript

Download (200kB) | Preview

Abstract

The Abraham-Minkowski controversy is the debate surrounding the "correct" form of the energy-momentum tensor of light in a medium. Over a century of theoretical and experimental studies have consistently produced conflicting results, with no consensus being found on how best to describe the influence of a material on the propagation of light. It has been argued that the total energy-momentum tensor for each of the theories, which includes both wave and material components, are equal. The difficulty in separating the full energy-momentum tensor is generally attributed to the fact that one cannot obtain the energy-momentum tensor of the medium for real materials. Non-linear electrodynamics provides an opportunity to approach the debate from an all optical set up, where the role of the medium is replaced by the vacuum under the influence of a strong background field. We derive, from first principles, the general form of the energy-momentum tensor in such theories, and use our results to shed some light on this long standing issue.