Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

On the energy-momentum tensor of light in strong fields : an all optical view of the Abraham-Minkowski controversy

MacLeod, Alexander J. and Noble, Adam and Jaroszynski, Dino A. (2017) On the energy-momentum tensor of light in strong fields : an all optical view of the Abraham-Minkowski controversy. In: Relativistic Plasma Waves and Particle Beams as Coherent and Incoherent Radiation Sources II. Proceedings of SPIE . Society of Photo-optical Instrumentation Engineers (SPIE), Bellingham, Washington. ISBN 9781510609693

[img]
Preview
Text (Macleod-etal-PSPIE-2017-On-the-energy-momentum-tensor-of-light-in-strong-fields)
Macleod_etal_PSPIE_2017_On_the_energy_momentum_tensor_of_light_in_strong_fields.pdf
Accepted Author Manuscript

Download (200kB) | Preview

Abstract

The Abraham-Minkowski controversy is the debate surrounding the "correct" form of the energy-momentum tensor of light in a medium. Over a century of theoretical and experimental studies have consistently produced conflicting results, with no consensus being found on how best to describe the influence of a material on the propagation of light. It has been argued that the total energy-momentum tensor for each of the theories, which includes both wave and material components, are equal. The difficulty in separating the full energy-momentum tensor is generally attributed to the fact that one cannot obtain the energy-momentum tensor of the medium for real materials. Non-linear electrodynamics provides an opportunity to approach the debate from an all optical set up, where the role of the medium is replaced by the vacuum under the influence of a strong background field. We derive, from first principles, the general form of the energy-momentum tensor in such theories, and use our results to shed some light on this long standing issue.