Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

On using simulation to model the installation process logistics for an offshore wind farm

Barlow, Euan and Tezcaner Ozturk, Diclehan and Revie, Matthew and Akartunali, Kerem and Day, Alexander and Boulougouris, Evangelos (2017) On using simulation to model the installation process logistics for an offshore wind farm. Working paper. University of Strathclyde, Glasgow. (Unpublished)

Text (Barlow-etal-2016-WP-On-using-simulation-to-model-the-installation-process)
Barlow_etal_2016_WP_On_using_simulation_to_model_the_installation_process.pdf - Final Published Version

Download (698kB) | Preview


The development of offshore wind farms (OWFs) in Europe is progressing to sites which are characteristically further from shore, in deeper waters, and of larger scale than previous sites. A consequence of moving further offshore is that installation operations are subject to harsher weather conditions, resulting in increased uncertainty in relation to the cost and duration of any operations. Assessing the comparative risks associated with different installation scenarios and identifying the best course of action is therefore a crucial problem for decision makers. Motivated by collaboration with industry partners, we present a detailed definition of the OWF installation process logistics problem, where aspects of fleet sizing, composition, and vessel scheduling are present. This article illustrates the use of simulation models to improve the understanding of the risks associated with logistical installation decisions. The developed tool employs a realistic model of the installation operations and enables the effect of any logistical decision to be investigated. A case study of an offshore wind farm installation project is presented in order to explore the impact of key logistical decisions on the cost and duration of the installation, and demonstrates that savings of up to 50% can be achieved through vessel optimization.