Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Pollutant and corrosion control technology and efficient coal combustion

Daood, Syed Sheraz and Ottolini, Marc and Taylor, Scott and Ogunyinka, Ola and Hossain, Md. Moinul and Lu, Gang and Yan, Yong and Nimmo, William (2017) Pollutant and corrosion control technology and efficient coal combustion. Energy and Fuels, 31 (5). pp. 5581-5596. ISSN 0887-0624

[img] Text (Daood-etal-EF2017-Pollutant-and-corrosion-control-technology-and-efficient)
Daood_etal_EF2017_Pollutant_and_corrosion_control_technology_and_efficient.pdf - Accepted Author Manuscript
Restricted to Repository staff only until 10 April 2018.

Download (4MB) | Request a copy from the Strathclyde author

Abstract

High efficiency and low emissions from coal-fired power stations have been the drive behind the development of present and future efficient coal combustion technologies. Upgrading coal, capturing CO2, reducing emission of NOx, SO2, and particulate matter, and mitigating slagging, fouling, and corrosion are the key initiatives behind these efficient coal technologies. This study focuses on an efficient coal combustion technology utilizing a newly developed fuel additive (Silanite), which addresses most of the aforementioned key points. Silanite, a finely milled multioxide additive, when mixed with the coal without the need to change the boiler installation has been proven to increase the boiler efficiency and flame temperature with reduction in corrosion and NOx and particulate matter (dust) emissions. The process has been developed through bench, pilot (100 kWth), and full scale (233 MWth) and has been found to have a number of beneficial effects that add up to a viable retrofit to an existing power plant as demonstrated by results from 233 MWth boiler tests (under BS EN 12952-15:2003 standard). The benefits proven on commercial and laboratory scale include the following: reductions of 20% in the overall particulates, 42% in loss on ignition, and 8–25% in NOx with about 30% increase in the life span of the tube section of the boiler.