Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Pollutant and corrosion control technology and efficient coal combustion

Daood, Syed Sheraz and Ottolini, Marc and Taylor, Scott and Ogunyinka, Ola and Hossain, Md. Moinul and Lu, Gang and Yan, Yong and Nimmo, William (2017) Pollutant and corrosion control technology and efficient coal combustion. Energy and Fuels, 31 (5). pp. 5581-5596. ISSN 0887-0624

[img]
Preview
Text (Daood-etal-EF2017-Pollutant-and-corrosion-control-technology-and-efficient)
Daood_etal_EF2017_Pollutant_and_corrosion_control_technology_and_efficient.pdf
Accepted Author Manuscript

Download (4MB) | Preview

Abstract

High efficiency and low emissions from coal-fired power stations have been the drive behind the development of present and future efficient coal combustion technologies. Upgrading coal, capturing CO2, reducing emission of NOx, SO2, and particulate matter, and mitigating slagging, fouling, and corrosion are the key initiatives behind these efficient coal technologies. This study focuses on an efficient coal combustion technology utilizing a newly developed fuel additive (Silanite), which addresses most of the aforementioned key points. Silanite, a finely milled multioxide additive, when mixed with the coal without the need to change the boiler installation has been proven to increase the boiler efficiency and flame temperature with reduction in corrosion and NOx and particulate matter (dust) emissions. The process has been developed through bench, pilot (100 kWth), and full scale (233 MWth) and has been found to have a number of beneficial effects that add up to a viable retrofit to an existing power plant as demonstrated by results from 233 MWth boiler tests (under BS EN 12952-15:2003 standard). The benefits proven on commercial and laboratory scale include the following: reductions of 20% in the overall particulates, 42% in loss on ignition, and 8–25% in NOx with about 30% increase in the life span of the tube section of the boiler.