Design of a multi-agent system for distributed voltage regulation

Chen, Minjiang and Athanasiadis, Dimitrios and Al Faiya, Badr and McArthur, Stephen and Kockar, Ivana and Lu, Haowei and De Leon, Francisco; (2017) Design of a multi-agent system for distributed voltage regulation. In: 2017 19th International Conference on Intelligent Systems Application to Power Systems (ISAP). IEEE, USA. ISBN 978-1-5090-4000-1 (

[thumbnail of Chen-etal-ISAP-2017-Design-of-a-multi-agent-system-for-distributed-voltage-regulation]
Text. Filename: Chen_etal_ISAP_2017_Design_of_a_multi_agent_system_for_distributed_voltage_regulation.pdf
Accepted Author Manuscript

Download (1MB)| Preview


In this paper, an intelligent distributed multi-agent system (MAS) is proposed for the implementation of a novel optimization technique for distributed voltage regulation. The proposed MAS approach controls a large heavily-meshed distribution network which is grouped into small subnetworks using ε decomposition. The voltage regulation is accomplished by distributed generator (DG) agents, linear programming solver (LPS) agents, network violation detector (NVD) agents, and one ε decomposition agent. The LPS agent has an embedded control algorithm which optimizes DG generation within a subnetwork once the voltage at particular nodes exceeds the normal operational limits. The subnetworks and their control requirements are achieved through self-organization, which is the novelty of the research. Each intelligent agent has its own knowledge and reasoning logic to plan its own activities. The control actions are coordinated through agent communications within the subnetwork. The agent platform, Presage2, with improved autonomy and agent communication capability, has been used to develop the proposed MAS system and design the agents’ behaviors.