Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Multi-domain modelling using the ESP-r system

Kelly, N.J. and Strachan, P.A. (2001) Multi-domain modelling using the ESP-r system. In: Proceedings of eSIM 2001 Conference on Building Energy Simulation, 2001-06-13 - 2001-06-14.

Full text not available in this repository. Request a copy from the Strathclyde author
Official URL: http://www.esim.ca/2001/

Abstract

Prediction of building performance is inherently a multi-domain problem. This is particularly true of many modern buildings where the aim is to provide energy efficient operation and high levels of comfort (thermal, visual, acoustic) and indoor air quality. Such buildings may employ sophisticated environmental control systems, and/or energy efficient design features such as natural daylighting, natural ventilation and building-integrated renewables. The ESP-r system allows the analysis of coupled, inter-domain processes, e.g, detailed air flow and dynamic building temperature variation. The program has the capability to model, in an integrated manner, the following domains to variable levels of resolution: thermal, lighting, ventilation (network air flow and CFD), moisture, HVAC, electrical power flow (including renewable energy sources). All of these domains can be subjected to user-defined control action. The modeller can select, based on the particular design, which domains to include in the analysis. This paper discusses the importance of multi-domain modelling and illustrates this with an example of an application where it is important to model interactions between different domains: the detailed modelling of an HVAC system, coupled with the building it serves. The model highlighted is one developed in support of HOT3000 developments at Natural Resources, Canada (NRCan).