Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Tunable, CW laser emission at 225 nm via intracavity frequency tripling in a semiconductor disk laser

Rodríguez-García, Julio M. and Pabœuf, David and Hastie, Jennifer E. (2017) Tunable, CW laser emission at 225 nm via intracavity frequency tripling in a semiconductor disk laser. IEEE Journal of Selected Topics in Quantum Electronics, 23 (6). ISSN 1077-260X

[img]
Preview
Text (Rodríguez-García-etal-IEEE-JSTQE-2017-Tunable-CW-laser-emission-at-225-nm-via-intracavity)
Rodr_guez_Garc_a_etal_IEEE_JSTQE_2017_Tunable_CW_laser_emission_at_225_nm_via_intracavity.pdf
Final Published Version
License: Creative Commons Attribution 3.0 logo

Download (521kB) | Preview

Abstract

Numerous applications would benefit from a compact laser source with tunable, continuous-wave emission in the deep ultraviolet (wavelengths <250nm); however, very few laser sources have been demonstrated with direct emission in this spectral region and options are generally limited to pulsed, fixed wavelength sources or complex and impractical setups for nonlinear frequency mixing of the emission of several infrared lasers in various external enhancement cavities. Here we propose an all-solid-state, continuous-wave, tunable laser with emission between 224 nm and 226 nm via intracavity frequency tripling in an AlGaInP-based semiconductor disk laser (SDL). Output power up to 78 µW is achieved in CW operation, with a tuning range over 350 cm-1. AlGaInP-based SDLs may be designed to emit anywhere between ~640 – 690 nm such that wavelengths between 213 nm and 230 nm may be targeted for specific applications using a similar set-up. An in-depth study of the nonlinear conversion has been carried out to understand the limitations of the set-up, namely large walk-off angles for phase-matching in the nonlinear crystals, and the potential for increasing the output power to several milli-Watts. This is, to the authors' knowledge, the first implementation of intracavity frequency tripling in a visible SDL and the shortest wavelength emitted from an SDL system.