Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

The S-Cycle performance matrix : supporting comprehensive sustainability performance evaluation of technical systems

Hay, L. and Duffy, A. H. B. and Whitfield, R. I. (2017) The S-Cycle performance matrix : supporting comprehensive sustainability performance evaluation of technical systems. Systems Engineering, 20 (1). pp. 45-70. ISSN 1520-6858

[img]
Preview
Text (Hay-etal-SE-2017-The-S-Cycle-performance-matrix-supporting-comprehensive-sustainability)
Hay_etal_SE_2017_The_S_Cycle_performance_matrix_supporting_comprehensive_sustainability.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (533kB) | Preview

Abstract

The work reported in this paper consolidates and rationalises disparate evaluation methods in a novel, generic framework to support the selection of comprehensive material/energetic sustainability performance indicators (SPIs) for technical systems. The S-Cycle Performance Matrix (S-CPMatrix) is comprised of 6 generic sustainability goals, 11 SPI archetypes, and 23 corresponding metrics identified from a model of technical system sustainability (the S-Cycle). The matrix was evaluated by interpreting and classifying 324 indicators currently applied to evaluate technical system sustainability performance in the literature, with 94.1% found to be fully classifiable with respect to the matrix following several refinements. The remaining 5.9% suggested additional SPI archetypes and a goal that were not initially identified. The matrix is intended to support decision makers in meeting three criteria for comprehensiveness identified from the literature: (C1) inclusion of indicators measuring performance at all relevant scales; (C2) inclusion of efficiency and effectiveness indicators; and (C3) coverage of all system sustainability goals. It may be applied to different systems in conjunction with different evaluation methods, thereby contributing to more consistent guidance on the selection of comprehensive SPIs for technical systems. In addition to industrial evaluation and comparison with existing evaluation methods, four avenues for future research were identified: (i) use of the S-CPMatrix to support systems comparison/benchmarking; (ii) further investigation of unsupported metrics; (iii) the nature and measurement of contaminants; and (iv) the comprehensiveness of SPI sets currently used in sustainability performance evaluation of technical systems.