Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Simple ears inspire frequency agility in an engineered acoustic sensor system

Guerreiro, José and Jackson, Joseph C. and Windmill, James F. C. (2017) Simple ears inspire frequency agility in an engineered acoustic sensor system. IEEE Sensors Journal, 17 (22). pp. 7298-7305. ISSN 1530-437X

[img]
Preview
Text (Guerreiro-etal-IEEESJ-Simple-ears-inspire-frequency-agility)
Guerreiro_etal_IEEESJ_Simple_ears_inspire_frequency_agility.pdf
Accepted Author Manuscript

Download (568kB) | Preview

Abstract

Standard microphones and ultrasonic devices are generally designed with a static and flat frequency response in order to address multiple acoustic applications. However, they may not be flexible or adaptable enough to deal with some requirements. For instance, when operated in noisy environments such devices may be vulnerable to wideband background noise which will require further signal processing techniques to remove it, generally relying on digital processor units. In this work, we consider if microphones and ultrasonic devices could be designed to be sensitive only at selected frequencies of interest, whilst also providing flexibility in order to adapt to different signals of interest and to deal with environmental demands. This research exploits the concept where the “transducer becomes part of the signal processing chain” by exploring feedback processes between mechanical and electrical mechanisms that together can enhance peripheral sound processing. This capability is present within a biological acoustic system, namely in the ears of certain moths. That was used as the model of inspiration for a smart acoustic sensor system which provides dynamic adaptation of its frequency response with amplitude and time dependency according to the input signal of interest.