Simple ears inspire frequency agility in an engineered acoustic sensor system
Guerreiro, José and Jackson, Joseph C. and Windmill, James F. C. (2017) Simple ears inspire frequency agility in an engineered acoustic sensor system. IEEE Sensors Journal, 17 (22). pp. 7298-7305. ISSN 1530-437X
|
Text (Guerreiro-etal-IEEESJ-Simple-ears-inspire-frequency-agility)
Guerreiro_etal_IEEESJ_Simple_ears_inspire_frequency_agility.pdf Accepted Author Manuscript Download (568kB)| Preview |
Abstract
Standard microphones and ultrasonic devices are generally designed with a static and flat frequency response in order to address multiple acoustic applications. However, they may not be flexible or adaptable enough to deal with some requirements. For instance, when operated in noisy environments such devices may be vulnerable to wideband background noise which will require further signal processing techniques to remove it, generally relying on digital processor units. In this work, we consider if microphones and ultrasonic devices could be designed to be sensitive only at selected frequencies of interest, whilst also providing flexibility in order to adapt to different signals of interest and to deal with environmental demands. This research exploits the concept where the “transducer becomes part of the signal processing chain” by exploring feedback processes between mechanical and electrical mechanisms that together can enhance peripheral sound processing. This capability is present within a biological acoustic system, namely in the ears of certain moths. That was used as the model of inspiration for a smart acoustic sensor system which provides dynamic adaptation of its frequency response with amplitude and time dependency according to the input signal of interest.
Creators(s): |
Guerreiro, José ![]() ![]() | Item type: | Article |
---|---|
ID code: | 60536 |
Notes: | (c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. |
Keywords: | bio-inspired acoustic transducer, dynamic frequency adaptation, feedback control, embedded system, realtime signal-processing, moth auditory system, resonance frequency, prototyping, Electrical engineering. Electronics Nuclear engineering, Signal Processing, Electrical and Electronic Engineering |
Subjects: | Technology > Electrical engineering. Electronics Nuclear engineering |
Department: | Faculty of Engineering > Electronic and Electrical Engineering Technology and Innovation Centre > Sensors and Asset Management |
Depositing user: | Pure Administrator |
Date deposited: | 26 Apr 2017 11:31 |
Last modified: | 21 Jan 2021 09:18 |
URI: | https://strathprints.strath.ac.uk/id/eprint/60536 |
Export data: |