Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo

Tzeferacos, P. and Rigby, A. and Bott, A. and Bell, A. R. and Bingham, R. and Casner, A. and Cattaneo, F. and Churazov, E. M. and Emig, J. and Flocke, N. and Fiuza, F. and Forest, C. B. and Foster, J. and Graziani, C. and Katz, J. and Koenig, M. and Li, C.-K. and Meinecke, J. and Petrasso, R. and Park, H.-S. and Remington, B. A. and Ross, J. S. and Ryu, D. and Ryutov, D. and Weide, K. and White, T. G. and Reville, B. and Miniati, F. and Schekochihin, A. A. and Froula, D. H. and Gregori, G. and Lamb, D. Q. (2017) Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo. Physics of Plasmas, 24. ISSN 1070-664X

[img]
Preview
Text (Tzeferacos-etal-PP-2017-Experiments-aiming-to-demonstrate-magnetic-field-amplification-via-turbulent-dynamo)
Tzeferacos_etal_PP_2017_Experiments_aiming_to_demonstrate_magnetic_field_amplification_via_turbulent_dynamo.pdf
Final Published Version

Download (4MB)| Preview

    Abstract

    The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.