Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Application of smart honeycomb structures for automotive passive safety

Ganilova, Olga and Low, Jia (2017) Application of smart honeycomb structures for automotive passive safety. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. ISSN 0954-4070

[img]
Preview
Text (Ganilova-Low-PIMED-2017-Application-of-smart-honeycomb-structures-for-automotive-passive-safety)
Ganilova_Low_PIMED_2017_Application_of_smart_honeycomb_structures_for_automotive_passive_safety.pdf
Accepted Author Manuscript

Download (2MB) | Preview

Abstract

Nowadays, most energy absorbing devices used in industry absorb energy through permanent deformation. In some cases, consumers have to repair or even replace energy absorbers even after a mild collision. The work presented in this paper proposes a novel re-usable solution in the form of a hybrid bumper-crush can design where a recoverable structure is integrated into the bumper beam and crush can for a mild collision situation in addition to the traditional energy absorbers recommended for more severe collisions. The main investigation is focused around the performance and optimisation of Negative Stiffness honeycomb, the recoverable structure and honeycomb-filled elements. A comprehensive study was undertaken to investigate numerically the behaviour of these energy absorbing structures under crash conditions, corresponding to real scenarios and simulated using a specially developed finite element model