Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Controlled propagation of spiking dynamics in vertical-cavity surface-emitting lasers : towards neuromorphic photonic networks

Deng, Tao and Robertson, Joshua and Hurtado, Antonio (2017) Controlled propagation of spiking dynamics in vertical-cavity surface-emitting lasers : towards neuromorphic photonic networks. IEEE Journal of Selected Topics in Quantum Electronics, 23 (6). ISSN 1077-260X

[img]
Preview
Text (Deng-etal-JSTQE-2017-Controlled-propagation-of-spiking-dynamics)
Deng_etal_JSTQE_2017_Controlled_propagation_of_spiking_dynamics.pdf
Accepted Author Manuscript

Download (717kB) | Preview

Abstract

We report experimentally and in theory on the controllable propagation of spiking regimes between two interlinked Vertical-Cavity Surface-Emitting Lasers (VCSELs). We show that spiking patterns generated in a first transmitter VCSEL (T-VCSEL) are communicated to a second receiver VCSEL (R-VCSEL) which responds by firing the same spiking response. Importantly, the spiking regimes from both devices had analogous temporal and amplitude characteristics, including equal number of spikes fired, same spike and inter-spike temporal durations and similar spike intensity properties. These responses are analogous to the spiking communication patterns of biological neurons yet at sub-nanosecond speeds, this is several (up to 8) orders of magnitude faster than the timescales of biological neurons. We have also carried out numerical simulations reproducing with high degree of agreement the experimental findings. These results obtained with inexpensive, commercially available VCSELs operating at important telecom wavelengths (1300nm) offer great prospects for the scaling of emerging VCSEL-based photonic neuronal models into network configurations for use in novel neuromorphic photonic systems. This offers high potentials for non-traditional computing paradigms beyond digital systems and able to operate at ultrafast speeds.