Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Assessment of the last-in-first out principle of access for managing the connection of distributed wind generators

Danzerl, D. and Gill, S. and Kockar, I. and Anaya-Lara, O. (2017) Assessment of the last-in-first out principle of access for managing the connection of distributed wind generators. In: 5th IET International Conference on Renewable Power Generation (RPG) 2016. IET, Stevenage. ISBN 9781785613005

Text (Danzerl-etal-RPG2016-Assessment-of-the-last-in-first-out-principle-of-access)
Danzerl_etal_RPG2016_Assessment_of_the_last_in_first_out_principle_of_access.pdf - Accepted Author Manuscript

Download (360kB) | Preview


Recent projects in the UK have investigated different connection arrangements for managing distributed wind generators to maintain thermal limits and a number of principle of access for generators to the limited distribution network capacity have been investigated. However, principle of access to manage voltage limits have not received as much attention. This study aims to evaluate the current practice for connecting ‘non-firm’ distributed wind generators under both voltage and thermal constraint conditions. It addresses the issue by developing a representative model of a UK 11kV radial distribution feeder comprising a mix of urban and rural sections using time-step optimal power flow simulations. The results indicated that when the principle is applied under both network constraint conditions, it can lead to inefficient use of network capacities and reduced renewable energy yields.