Accounting for the role of long walks on networks via a new matrix function

Estrada, Ernesto and Silver, Grant (2017) Accounting for the role of long walks on networks via a new matrix function. Journal of Mathematical Analysis and Applications, 449 (2). pp. 1581-1600. ISSN 0022-247X (

[thumbnail of Estrada-Silver-JMAA-2017-Accounting-for-the-role-of-long-walks-on-networks]
Text. Filename: Estrada_Silver_JMAA_2017_Accounting_for_the_role_of_long_walks_on_networks.pdf
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (2MB)| Preview


We introduce a new matrix function for studying graphs and real-world networks based on a double-factorial penalization of walks between nodes in a graph. This new matrix function is based on the matrix error function. We find a very good approximation of this function using a matrix hyperbolic tangent function. We derive a communicability function, a subgraph centrality and a double-factorial Estrada index based on this new matrix function. We obtain upper and lower bounds for the double-factorial Estrada index of graphs, showing that they are similar to those of the single-factorial Estrada index. We then compare these indices with the single-factorial one for simple graphs and real-world networks. We conclude that for networks containing chordless cycles-holes-the two penalization schemes produce significantly different results. In particular, we study two series of real-world networks representing urban street networks, and protein residue networks. We observe that the subgraph centrality based on both indices produce significantly different ranking of the nodes. The use of the double factorial penalization of walks opens new possibilities for studying important structural properties of real-world networks where long-walks play a fundamental role, such as the cases of networks containing chordless cycles.


Estrada, Ernesto ORCID logoORCID: and Silver, Grant ORCID logoORCID:;