Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Kinetics of early stages of resorcinol-formaldehyde polymerization investigated by solution phase nuclear magnetic resonance spectroscopy

Gaca, Katarzyna Z. and Parkinson, John A. and Sefcik, Jan (2017) Kinetics of early stages of resorcinol-formaldehyde polymerization investigated by solution phase nuclear magnetic resonance spectroscopy. Polymer, 110. pp. 62-73. ISSN 0032-3861

[img]
Preview
Text (Gaca-etal-Polymer2017-Kinetics-of-early-stages-of-resorcinol-formaldehyde-polymerization)
Gaca_etal_Polymer2017_Kinetics_of_early_stages_of_resorcinol_formaldehyde_polymerization.pdf
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (1MB) | Preview

Abstract

Resorcinol and formaldehyde reactions were quantitatively monitored by means of 1H and 13C NMR spectroscopy at room temperature (293 K) before heat treatment leading to formation of organic gels. We found that resorcinol substitution with formaldehyde starts with an initial surprisingly rapid step followed by a more gradual depletion of the reactants. Substituted species with both monomeric and dimeric hydroxymethyl groups were observed immediately after mixing of the reagents with the proportion of formaldehyde-based solution species consumed between 30 and 50%. Substituted resorcinol species can be all accounted for by solution-phase NMR at ambient conditions before they form nanoscale clusters upon heating. It can therefore be expected that the final properties of resorcinol-formaldehyde gels depend not only on the composition of reaction mixtures and duration of the high temperature treatment but also on the manner and period of reagent mixing (a hitherto overlooked synthesis step), as different amounts of alternatively substituted resorcinol can be produced before heat treatment commences.