A novel defect depth measurement method based on nonlinear system identification for pulsed thermographic inspection
Zhao, Yifan and Mehnen, Jörn and Sirikham, Adisorn and Roy, Rajkumar (2017) A novel defect depth measurement method based on nonlinear system identification for pulsed thermographic inspection. Mechanical Systems and Signal Processing, 85. 382–395. ISSN 0888-3270 (https://doi.org/10.1016/j.ymssp.2016.08.033)
Preview |
Text.
Filename: Zhao_etal_MSSP2016_novel_defect_depth_measurement_method_based_on_nonlinear.pdf
Final Published Version License: Download (3MB)| Preview |
Abstract
This paper introduces a new method to improve the reliability and confidence level of defect depth measurement based on pulsed thermographic inspection by addressing the over-fitting problem. Different with existing methods using a fixed model structure for all pixels, the proposed method adaptively detects the optimal model structure for each pixel thus targeting to achieve better model fitting while using less model terms. Results from numerical simulations and real experiments suggest that (a) the new method is able to measure defect depth more accurately without a pre-set model structure (error is usually within 1% when SNR>32 dB) in comparison with existing methods, (b) the number of model terms should be 8 for signals with SNR∈[30dB,40dB] 8–10 for SNR>40 dB and 5–8 for SNR<30 dB, and (c) a data length with at least 100 data points and 2–3 times of the characteristic time usually produces the best results.
ORCID iDs
Zhao, Yifan, Mehnen, Jörn ORCID: https://orcid.org/0000-0001-6625-436X, Sirikham, Adisorn and Roy, Rajkumar;-
-
Item type: Article ID code: 59777 Dates: DateEvent15 February 2017Published30 August 2016Published Online22 August 2016AcceptedSubjects: Technology > Mechanical engineering and machinery Department: Faculty of Engineering > Design, Manufacture and Engineering Management
Strategic Research Themes > Advanced Manufacturing and MaterialsDepositing user: Pure Administrator Date deposited: 13 Feb 2017 12:06 Last modified: 11 Nov 2024 11:37 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/59777