Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

Enhancing ultraviolet spontaneous emission with a designed quantum vacuum

McArthur, Duncan and Hourahine, Benjamin and Papoff, Francesco (2017) Enhancing ultraviolet spontaneous emission with a designed quantum vacuum. Optics Express, 25 (4). pp. 4162-4179. ISSN 1094-4087

Text (McArthur-etal-OE-2017-Enhancing-ultraviolet-spontaneous-emission-with-a-designed-quantum-vacuum)
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview


We determine how to alter the properties of the quantum vacuum at ultraviolet wavelengths to simultaneously enhance the spontaneous transition rates and the far field detection rate of quantum emitters. We find the response of several complex nanostructures in the 200 − 400 nm range, where many organic molecules have fluorescent responses, using an analytic decomposition of the electromagnetic response in terms of continuous spectra of plane waves and discrete sets of modes. Coupling a nanorod with an aluminum substrate gives decay rates up to 2.7 × 103 times larger than the decay rate in vacuum and enhancements of 824 for the far field emission into the entire upper semi-space and of 2.04 × 103 for emission within a cone with a 60º semi-angle. This effect is due to both an enhancement of the field at the emitter’s position and a reshaping of the radiation patterns near mode resonances and cannot be obtained by replacing the aluminum substrate with a second nanoparticle or with a fused silica substrate. These large decay rates and far field enhancement factors will be very useful in the detection of fluorescence signals, as these resonances can be shifted by changing the dimensions of th nanorod. Moreover, these nanostructures have potential for nano-lasing because the Q factors of these resonances can reach 107.9, higher than the Q factors observed in nano-lasers.