Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Efficacy of an anti-fertility vaccine based on mammalian gonadotrophin releasing hormone (GnRH-I)--a histological comparison in male animals

Ferro, V. A and Khan, M. A. H and McAdam, D and Colston, A and Aughey, E and Mullen, A. B and Waterston, M. M and Harvey, M. J. A. (2004) Efficacy of an anti-fertility vaccine based on mammalian gonadotrophin releasing hormone (GnRH-I)--a histological comparison in male animals. Veterinary immunology and immunopathology, 101 (1-2). pp. 73-86. ISSN 0165-2427

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

A N-terminal modified gonadotrophin releasing hormone (GnRH-I, tetanus toxoid-CHWSYGLRPG-NH2) conjugate was evaluated histologically in a number of male animal species (mice, dogs and sheep). The immunogen has previously been shown to be highly effective in rats, by suppressing both steroidogenesis and spermatogenesis. However, cross-species efficacy of peptide vaccines is known to be highly variable. Therefore, a comparative evaluation of reproductive tissues from animals immunized against this immunogen adsorbed onto an alum-based adjuvant was made. The sheep and dogs were chosen, as use of anti-fertility vaccines in these species is important in farming and veterinary practice. Changes in testicular size were measured during the immunization period and the greatest alteration (attributed to gonadal atrophy) was observed in the rat. Following euthanasia, the testicular tissue was evaluated for spermatogenesis. The most susceptible species to GnRH-I ablation was the rat, which showed significant (P < 0.0001) arrest in spermatogenesis compared with untreated controls. Testicular sections taken from treated animals were completely devoid of spermatozoa or spermatids, in comparison with 94% of the untreated controls showing evidence of spermatogenesis. The immunized mice and rams also showed significant arrest (P < 0.0001). There was a 30-45% decrease in spermatogenesis and total azoospermia was not apparent. However, the least responsive were the dogs, which showed little significant variation compared to untreated animals and only a 5% decrease in activity. A comparison of the specific IgG response to GnRH-I indicated that in sheep and dogs the response was not maintained, unlike in rodents, suggesting that suppression of fertility may be due to differences in immune responses in different animal species.