Lower cost automotive piston from 2124/SiC/25p metal-matrix composite
Falsafi, J. and Rosochowska, M. and Jadhav, P. and Tricker, D. (2017) Lower cost automotive piston from 2124/SiC/25p metal-matrix composite. In: SAE World Congress Experience, 2017-04-04 - 2017-04-06, Cobo Center.
Preview |
Text.
Filename: Falsafi_etal_WCX17_2017_Lower_cost_automotive_piston_from_2124_SiC_25p_metal_matrix_composite.pdf
Accepted Author Manuscript Download (1MB)| Preview |
Abstract
Engineered materials have made a breakthrough in a quest for materials with a combination of custom-made properties to suit particular applications. One of such materials is 2124/SiC/25p, a high-quality aerospace grade aluminium alloy reinforced with ultrafine particles of silicon carbide, manufactured by a powder metallurgy route. This aluminium matrix composite offers a combination of greater fatigue strength at elevated temperatures, lower thermal expansion and greater wear resistance in comparison with conventionally used piston materials. The microscale particulate reinforcement also offers good formability and machinability. Despite the benefits, the higher manufacturing cost often limits their usage in high-volume industries such as automotive where such materials could significantly improve the engine performance. This paper presents mechanical and forging data for a lower cost processing route for metal matrix composites. Finite element modelling and analysis were used to examine forging of an automotive piston and die wear. This showed that selection of the forging route is important to maximise die life. Mechanical testing of the forged material showed a minimal reduction in fatigue properties at the piston operating temperature.
-
-
Item type: Conference or Workshop Item(Paper) ID code: 59452 Dates: DateEvent28 March 2017Published3 January 2017AcceptedSubjects: Technology > Engineering (General). Civil engineering (General) > Engineering design Department: Faculty of Engineering > Design, Manufacture and Engineering Management Depositing user: Pure Administrator Date deposited: 17 Jan 2017 11:59 Last modified: 08 Aug 2024 00:33 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/59452