Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

An ambipolar BODIPY derivative for a white exciplex OLED and cholesteric liquid crystal laser towards multi-functional devices

Chapran, Marian and Angioni, Enrico and Findlay, Neil John and Breig, Benjamin and Cherpak, Vladyslav and Stakhira, Pavlo and Tuttle, Tell and Volyniuk, Dmytro and Grazulevicius, Juozas Vidas and Nastishin, Yuriy A. and Lavrentovich, Oleg D. and Skabara, Peter John (2017) An ambipolar BODIPY derivative for a white exciplex OLED and cholesteric liquid crystal laser towards multi-functional devices. ACS Applied Materials and Interfaces, 9 (5). pp. 4750-4757. ISSN 1944-8244

Text (Chapran-etal-ACSAMI2017-ambipolar-BODIPY-derivative-for-a-white-exciplex-OLED)
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview


A new interface engineering method is demonstrated for the preparation of an efficient white organic light emitting diode (WOLED) by embedding an ultra-thin layer of the novel ambipolar red emissive compound 4,4-di-fluoro-2,6-di(4-hexylthiopen-2-yl)-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene (bThBODIPY) in the exciplex formation region. The compound shows a hole and electron mobility of 3.3 × 10-4 cm2 V-1 s-1 and 2 × 10-4 cm2 V-1 s-1, respectively at electric fields higher than 5.3 × 105 V cm-1. The resulting WOLED exhibited a maximum luminance of 6579 cd m-2 with CIE 1931 color coordinates (0.39; 0.35). The bThBODIPY dye is also demonstrated to be an effective laser dye for a cholesteric liquid crystal (ChLC) laser. New construction of the ChLC laser, by which a flat capillary with an optically isotropic dye solution is sandwiched between two dye-free ChLC cells, provides photonic lasing at a wavelength well-matched with that of a dye-doped planar ChLC cell.