The use of minimum selectable concentrations (MSCs) for determining the selection of antimicrobial resistant bacteria

Khan, Sadia and Beattie, Tara K. and Knapp, Charles W. (2017) The use of minimum selectable concentrations (MSCs) for determining the selection of antimicrobial resistant bacteria. Ecotoxicology, 26 (2). pp. 283-292. ISSN 0963-9292

[thumbnail of Khan-Beattie-Knapp-Ecotoxicology-2017-the-use-of-minimum-selectable-concentrations]
Text (Khan-Beattie-Knapp-Ecotoxicology-2017-the-use-of-minimum-selectable-concentrations)
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (707kB)| Preview


    The use of antimicrobial compounds is indispensable in many industries, especially drinking water production, to eradicate microorganisms. However, bacterial growth is not unusual in the presence of disinfectant concentrations that would be typically lethal, as bacterial populations can develop resistance. The common metric of population resistance has been based on the Minimum Inhibitory Concentration (MIC), which is based on bacteria lethality. However, sub-lethal concentrations may also select for resistant bacteria due to the differences in bacterial growth rates. This study determined the Minimal Selective Concentrations (MSCs) of bacterial populations exposed to free chlorine and monochloramine, representing a metric that possibly better reflects the selective pressures occurring at lower disinfectant levels than MIC. Pairs of phylogenetically similar bacteria were challenged to a range of concentrations of disinfectants. The MSCs of free chlorine and monochloramine were found to range between 0.021 and 0.39 mg L-1, which were concentrations 1/250 to 1/5 than the MICs of susceptible bacteria (MICsusc). This study indicates that sub-lethal concentrations of disinfectants could result in the selection of resistant bacterial populations, and MSCs would be a more sensitive indicator of selective pressure, especially in environmental systems.

    ORCID iDs

    Khan, Sadia ORCID logoORCID:, Beattie, Tara K. ORCID logoORCID: and Knapp, Charles W. ORCID logoORCID:;