Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Automatic pharynx and larynx cancer segmentation framework (PLCSF) on contrast enhanced MR images

Doshi, Trushali and Soraghan, John and Petropoulakis, Lykourgos and Di Caterina, Gaetano and Grose, Derek and Mackenzie, Kenneth and Wilson, Christina (2017) Automatic pharynx and larynx cancer segmentation framework (PLCSF) on contrast enhanced MR images. Biomedical Signal Processing and Control, 33. pp. 178-188. ISSN 1746-8094

[img] Text (Doshi-etal-BSPC2017-Automatic-pharynx-and-larynx-cancer-segmentation-framework)
Doshi_etal_BSPC2017_Automatic_pharynx_and_larynx_cancer_segmentation_framework.pdf - Accepted Author Manuscript
Restricted to Repository staff only until 12 December 2017.
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (725kB) | Request a copy from the Strathclyde author


A novel and effective pharynx and larynx cancer segmentation framework (PLCSF) is presented for automatic base of tongue and larynx cancer segmentation from gadolinium-enhanced T1-weighted magnetic resonance images (MRI). The aim of the proposed PLCSF is to assist clinicians in radiotherapy treatment planning. The initial processing of MRI data in PLCSF includes cropping of region of interest; reduction of artefacts and detection of the throat region for the location prior. Further, modified fuzzy c-means clustering is developed to robustly separate candidate cancer pixels from other tissue types. In addition, region-based level set method is evolved to ensure spatial smoothness for the final segmentation boundary after noise removal using non-linear and morphological filtering. Validation study of PLCSF on 102 axial MRI slices demonstrate mean dice similarity coefficient of 0.79 and mean modified Hausdorff distance of 2.2 mm when compared with manual segmentations. Comparison of PLCSF with other algorithms validates the robustness of the PLCSF. Inter- and intra-variability calculations from manual segmentations suggest that PLCSF can help to reduce the human subjectivity.