Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

A combined controller design of power system stabilizer and wind turbine drive-train damping filter

Zhang, F. and Leithead, W. and Anaya-Lara, O. (2012) A combined controller design of power system stabilizer and wind turbine drive-train damping filter. In: International Conference on Sustainable Power Generation and Supply (SUPERGEN 2012). IEEE, Piscataway, NJ.. ISBN 9781849196734

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A coordinated power system stabiliser (PSS) design for wind turbine equipped with doubly-fed induction generator (DFIG) is presented in this paper. It is shown that the proposed control scheme enables the optimal performance for both the wind turbine structural loads damping and the power system damping. The interaction between wind turbine controller and PSS is studied by simulation. A holistic model including both the wind turbine and the electric network dynamics is employed for the assessment of controller performance. The influence of PSS control on wind turbine drive-train and tower are demonstrated. A generic network model is used to test the contribution that wind farm can make to the power system damping. It is shown that wind turbine is capable of providing similar damping response as synchronous generator do with acceptable increase of structural loads.