Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Finite element investigation into torsion test in the range of large strain and deformation

Peng, Xianghe and Qin, Yi and Balendra, Rajendram (2001) Finite element investigation into torsion test in the range of large strain and deformation. Journal of Strain Analysis for Engineering Design, 36 (4). pp. 401-409. ISSN 0309-3247

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Torsion tests with thin-walled tubular, solid cylindrical and Lindholm-type tubular specimens were simulated using the finite element code ABAQUS, in the range of large strains and deformations. The results showed that for thin-walled tubular and solid cylindrical specimens the radii of the specimens almost remained straight during torsion; for Lindholm-type tubular specimens the twist angle of the cross-section at the two ends of the gauge section did not stay constant, due to the change of the specimen geometry (i.e. the end effect). A correction which considers the end effect should therefore be introduced when the stress-strain relationship is characterized. Compared with the stress-strain relationship obtained previously from experiment, a distinct difference was noted when conventional formulae were used to convert the torque and twist angle into the shear stress and shear strain. Further, the influence of axial constraint conditions at the two ends of the specimen was examined; the results showed that axial strains and stresses had no significant influence on the definition of the shear stress-shear strain relation, and hence these can be neglected when the stress-strain relationship is characterized.